Below is calculation formula regarding calculation of steel stress in a rectangular section.(cracked section)
Compression = Tension
Concrete + As' force = As force
\[\frac{1}{2}xbf_{c}+f_{s}'A_{s}'-f_{c}'A_{s}'=f_{s}A_{s}\] \[f_{c}=\varepsilon _{c}E_{c}\] \[f_{s}'=\varepsilon _{s}'E_{s}\] \[f_{s}=\varepsilon_{s}E_{s}\] \[\varepsilon _{s}=\varepsilon _{c} \frac{d-x}{x}\]\[\varepsilon _{s}'=\varepsilon _{c}\frac{x-d'}{x}\] \[\frac{1}{2}xb\varepsilon_{c}E_{c}+\varepsilon_{s}'E_{s}A_{s}'-\varepsilon_{c}'E_{c}A_{s}'=\varepsilon_{s}E_{s}A_{s}\] \[\frac{1}{2}xb\varepsilon_{c}E_{c}+\varepsilon_{c}\frac{x-d'}{x}E_{s}A_{s}'-\varepsilon_{c}\frac{x-d'}{x}E_{c}A_{s}'=\varepsilon_{c}\frac{d-x}{x}E_{s}A_{s}\] \[\frac{1}{2}xbE_{c}+\frac{x-d'}{x}E_{s}A_{s}'-\frac{x-d'}{x}E_{c}A_{s}'=\frac{d-x}{x}E_{s}A_{s}\] \[n=\frac{E_{c}}{E_{c}}\]
Concrete stress & Steel stress \[f_{c}=\frac{M_{s}}{\frac{1}{2}xb(d-\frac{x}{3})+(n-1)A_{s}'(\frac{x-d'}{x})(d-d')}\] \[f_{s}=nf_{c}\frac{d-x}{x}\]
'Structural' 카테고리의 다른 글
구조해석] 엑셀을 이용한 RM TCL에서 NODE를 캐드로 변환하는 법 (0) | 2020.03.11 |
---|---|
구조해석] 엑셀을 이용한 RM TCL에서 section 을 캐드로 변환하는 법 (0) | 2020.03.11 |
Two points Catenary equation [2/2] (0) | 2020.03.08 |
Two points Catenary equation [1/2] (0) | 2020.03.08 |
캔틸레버 등분포하중[Cantilever uniform distributed load] (0) | 2020.03.08 |