Two points Catenary equation [2/2]
- Structural
- 2020. 3. 8.
In previous post we obtain catenary equation.
Following is a example.
D = 500m h = 100m q = 10kN/m H = 3000kN (Horizontal force shall also be assumed) Boundary condition A(0,0) B(500,100) → z(0)=0 and z(500)=100 In first condition \[z(0)=\frac{H}{q}sinh(c_1)sinh(\frac{q}{H}0)+\frac{H}{q}cosh(c_1)cosh(\frac{q}{H}0)+c_2=0\] sinh(0)=0, cosh(0)=1 \[c_2=-\frac{H}{q}cosh(c_1)\] The equation is changed \[z=\frac{H}{q}sinh(c_1)sinh(\frac{q}{H}x)+\frac{H}{q}cosh(c_1)cosh(\frac{q}{H}x)-\frac{H}{q}cosh(c_1)\]
Second condition \[z(D)=\frac{H}{q}sinh(c_1)sinh(\frac{q}{H}D)+\frac{H}{q}cosh(c_1)cosh(\frac{q}{H}D)-\frac{H}{q}cosh(c_1)= h\] Solving c1 using Newton Raphson's method
\[f(c_1)=f(x)=z(D) - h = 0\] x₁(initial c1) = 1
then c2 = - 3000 / 10 cosh(1) = -462.9241904
f(x₁) = f(1) = z(500) - 100 = 1606.285742 x₁ + dx(0.00001) = 1.00001, c2 = -462.9277161
f(1.00001) = 1606.3036996
\[f'(x)=\frac{f(x+dx)-f(x)}{dx}\]
f'(1) = [f(1.00001) - f(1)] / 0.00001 = 1795.81307
\[x_2=x_1-\frac{f(x_1)}{f'(x_1)}\]
x₂ = 1 - 1606.285742 / 1795.81307 = 0.10553845 (second c1)
f(x₂) = 506.39333983 (not 0)
In the same way
f(x₃) = 85.38694039 (not 0)
.
.
.
f(x₆) = 4.0165e-10 (same as 0)
c1 = -0.65567036 , c2 = -366.8291184
The equation
Now, you will solve z value when putting x value.
and you can check following Excel Link Excel
'Structural' 카테고리의 다른 글
구조해석] 엑셀을 이용한 RM TCL에서 section 을 캐드로 변환하는 법 (0) | 2020.03.11 |
---|---|
Calculation of the service-load steel stress in a rectangular RC section (0) | 2020.03.11 |
Two points Catenary equation [1/2] (0) | 2020.03.08 |
캔틸레버 등분포하중[Cantilever uniform distributed load] (0) | 2020.03.08 |
단순보 등분포하중 [Simple beam uniform distributed load] (0) | 2020.03.08 |