Solving equation using Newton Raphson's method
- Math
- 2020. 3. 8.

Solving f(x) equation using Newton Raphson's method First you shall assume initial x₁ and solve f(x₁). Then check f(x₁) whether is 0(zero) or not. If not 0(zero), you assume x₂. x₂ is solved as following equation \[x_2=x_1-\frac{f(x_1)}{f'(x_1)}\]
\[f'(x)=\frac{f(x+dx)-f(x)}{dx}\]
\[f'(x_1)=\frac{f(x_1+dx)-f(x_1)}{dx}\]
Check f(x₂) wheter is 0 or not. If not 0(zero), you assume x₃ using above method If you continue to solve it this way, the answer will be calculated.
For example,
\[f(x)=2x^3+3x^2+5x+850\] |
x₁ = 30 (assume)
not 0(zero) In order to obtain x₂, you solve f'(x₁) , f(x₁+dx) dx=0.00001
Then f(x₂) is
not zero. For x₃ ...
... ... ...
Finding 0, x=-7.9349267 You can check the answer following excel. Excel link
\[f(x_1)=2(30)^3+3(30)^2+5(30)+850 = 57700.00000\] |
\[f(x_1+dx)=f(30+0.00001)\] |
\[=2(30.00001)^3+3(30.00001)^2+5(30.00001)+850 = 57700.055850\] |
\[f'(x_1)=\frac{f(x_1+dx) - f(x_1)}{dx}=\frac{57700.055850 - 57700.00000}{0.00001}=5585.001830\] |
\[x_{2}=x_1 - \frac{f(x_1)}{f'(x_1)}=30 - \frac{57700.055850}{5585.001830}=19.6687590\] |
\[f(x_2)=f(19.6687590)=17327.03937\] |
\[x_3=12.5796411\] |
\[f(x_3)=f(12.5796411)=5369.03054\] |
\[x_{10}=-7.9350620\] |
\[f(x_{10})=f(-7.9350620)=-0.04534\] |
\[x_{11}=-7.9349267\] |
\[f(x_{11})=f(-7.9349267)=0.00000\] |
'Math' 카테고리의 다른 글
울프럼 알파(WolframAlpha)도 첨자가 되네요. (0) | 2023.11.16 |
---|---|
Math] 원 위에서 움직이는(회전 혹은 구르는) 점의 변화 값 산정 (0) | 2020.03.15 |
원호 양단 하중작용시 등분포 하중 [uniform distributed load on arc] (1) | 2020.03.08 |
뉴튼-랩슨법으로 방정식의 해 구하기 (0) | 2020.03.08 |
세 점 포물선 그리기 식 유도 (0) | 2020.03.07 |